41 research outputs found

    A Structural Analysis of Field/Circuit Coupled Problems Based on a Generalised Circuit Element

    Full text link
    In some applications there arises the need of a spatially distributed description of a physical quantity inside a device coupled to a circuit. Then, the in-space discretised system of partial differential equations is coupled to the system of equations describing the circuit (Modified Nodal Analysis) which yields a system of Differential Algebraic Equations (DAEs). This paper deals with the differential index analysis of such coupled systems. For that, a new generalised inductance-like element is defined. The index of the DAEs obtained from a circuit containing such an element is then related to the topological characteristics of the circuit's underlying graph. Field/circuit coupling is performed when circuits are simulated containing elements described by Maxwell's equations. The index of such systems with two different types of magnetoquasistatic formulations (A* and T-Ω\Omega) is then deduced by showing that the spatial discretisations in both cases lead to an inductance-like element

    Reduced Order Modelling for the Simulation of Quenches in Superconducting Magnets

    Full text link
    This contributions discusses the simulation of magnetothermal effects in superconducting magnets as used in particle accelerators. An iterative coupling scheme using reduced order models between a magnetothermal partial differential model and an electrical lumped-element circuit is demonstrated. The multiphysics, multirate and multiscale problem requires a consistent formulation and framework to tackle the challenging transient effects occurring at both system and device level

    Parareal for index two differential algebraic equations

    Get PDF
    This article proposes modifications of the Parareal algorithm for its application to higher index differential algebraic equations (DAEs). It is based on the idea of applying the algorithm to only the differential components of the equation and the computation of corresponding consistent initial conditions later on. For differential algebraic equations with a special structure as, e.g. given in flux-charge modified nodal analysis, it is shown that the usage of the implicit Euler method as a time integrator suffices for the Parareal algorithm to converge. Both versions of the Parareal method are applied to numerical examples of nonlinear index 2 differential algebraic equations

    Application of the Waveform Relaxation Technique to the Co-Simulation of Power Converter Controller and Electrical Circuit Models

    Full text link
    In this paper we present the co-simulation of a PID class power converter controller and an electrical circuit by means of the waveform relaxation technique. The simulation of the controller model is characterized by a fixed-time stepping scheme reflecting its digital implementation, whereas a circuit simulation usually employs an adaptive time stepping scheme in order to account for a wide range of time constants within the circuit model. In order to maintain the characteristic of both models as well as to facilitate model replacement, we treat them separately by means of input/output relations and propose an application of a waveform relaxation algorithm. Furthermore, the maximum and minimum number of iterations of the proposed algorithm are mathematically analyzed. The concept of controller/circuit coupling is illustrated by an example of the co-simulation of a PI power converter controller and a model of the main dipole circuit of the Large Hadron Collider

    Index-aware learning of circuits

    Full text link
    Electrical circuits are present in a variety of technologies, making their design an important part of computer aided engineering. The growing number of tunable parameters that affect the final design leads to a need for new approaches of quantifying their impact. Machine learning may play a key role in this regard, however current approaches often make suboptimal use of existing knowledge about the system at hand. In terms of circuits, their description via modified nodal analysis is well-understood. This particular formulation leads to systems of differential-algebraic equations (DAEs) which bring with them a number of peculiarities, e.g. hidden constraints that the solution needs to fulfill. We aim to use the recently introduced dissection concept for DAEs that can decouple a given system into ordinary differential equations, only depending on differential variables, and purely algebraic equations that describe the relations between differential and algebraic variables. The idea then is to only learn the differential variables and reconstruct the algebraic ones using the relations from the decoupling. This approach guarantees that the algebraic constraints are fulfilled up to the accuracy of the nonlinear system solver, which represents the main benefit highlighted in this article.Comment: 15 pages, 15 figure

    MONA — A magnetic oriented nodal analysis for electric circuits

    Get PDF
    The modified nodal analysis (MNA) is probably the most widely used formulation for the modeling and simulation of electric circuits. Its conventional form uses electric node potentials and currents across inductors and voltage sources as unknowns, thus taking an electric viewpoint. In this paper, we propose an alternative magnetic oriented nodal analysis (MONA) for electric circuits, which is based on magnetic node potentials and charges across capacitors and voltage sources as the primary degrees of freedom, thus giving direct access to these quantities. The resulting system has the structure of a generalized gradient system which immediately ensures passivity in the absence of sources. A complete index analysis is presented showing regularity of the magnetic oriented formulation under standard topological conditions on the network interconnection. In comparison to conventional MNA, the differential‐algebraic index of MONA is smaller by one in most cases which facilitates the numerical solution. Some preliminary numerical experiments are presented for illustration of the feasibility and stability of the new approach

    Combined Parameter and Shape Optimization of Electric Machines with Isogeometric Analysis

    Full text link
    In structural optimization, both parameters and shape are relevant for the model performance. Yet, conventional optimization techniques usually consider either parameters or the shape separately. This work addresses this problem by proposing a simple yet powerful approach to combine parameter and shape optimization in a framework using Isogeometric Analysis (IGA). The optimization employs sensitivity analysis by determining the gradients of an objective function with respect to parameters and control points that represent the geometry. The gradients with respect to the control points are calculated in an analytical way using the adjoint method, which enables straightforward shape optimization by altering of these control points. Given that a change in a single geometry parameter corresponds to modifications in multiple control points, the chain rule is employed to obtain the gradient with respect to the parameters in an efficient semi-analytical way. The presented method is exemplarily applied to nonlinear 2D magnetostatic simulations featuring a permanent magnet synchronous motor and compared to designs, which were optimized using parameter and shape optimization separately. It is numerically shown that the permanent magnet mass can be reduced and the torque ripple can be eliminated almost completely by simultaneously adjusting rotor parameters and shape. The approach allows for novel designs to be created with the potential to reduce the optimization time substantially

    How to Build the Optimal Magnet Assembly for Magnetocaloric Cooling: Structural Optimization with Isogeometric Analysis

    Full text link
    In the search for more efficient and less environmentally harmful cooling technologies, the field of magnetocalorics is considered a promising alternative. To generate cooling spans, rotating permanent magnet assemblies are used to cyclically magnetize and demagnetize magnetocaloric materials, which change their temperature under the application of a magnetic field. In this work, an axial rotary permanent magnet assembly, aimed for commercialization, is computationally designed using topology and shape optimization. This is efficiently facilitated in an isogeometric analysis framework, where harmonic mortaring is applied to couple the rotating rotor-stator system of the multipatch model. Inner, outer and co-rotating assemblies are compared and optimized designs for different magnet masses are determined. These simulations are used to homogenize the magnetic flux density in the magnetocaloric material. The resulting torque is analyzed for different geometric parameters. Additionally, the influence of anisotropy in the active magnetic regenerators is studied in order to guide the magnetic flux. Different examples are analyzed and classified to find an optimal magnet assembly for magnetocaloric cooling

    Mathematical Analysis and Simulation of Field Models in Accelerator Circuits

    Get PDF
    Typically in electrical engineering a network modelling approach for the simulation of devices and their surrounding circuitry is taken, where each device is considered by a voltage-to-current relation. For some applications, however, this simplification does not yield the required accuracy. In these cases, refined modelling can be performed, where a spatially distributed partial differential equation modelling the required physical quantity is coupled to the classic network equations. The resulting coupled system of equations often exhibits a multiscale, multirate and even multiphysical behaviour that is tackled with involved algorithms so as to efficiently simulate it. Its structural analysis is therefore important, to numerically treat the system appropriately and to ensure that the algorithms converge properly. This thesis deals with the mathematical analysis of these type of systems as well as their simulation. The systems of equations obtained from circuits with semidiscrete refined models are typically differential algebraic equations. Their numerical and analytical difficulties is studied in the context of their differential algebraic index. For that, three generalised circuit element definitions are given, that allow the classification of the refined models. Hereby, the index of the entire coupled system can be specified by means of topological properties of the circuit. Several approximations to Maxwell’s equations are classified with the generalised element definitions to obtain the index properties of the field-circuit coupled systems. For the simulation two algorithms are studied. First the co-simulation waveform relaxation method is analysed for field-circuit coupled systems arising from magnetoquasistatic fields with eddy current effects on superconducting coils. The convergence of the algorithm is sped up by means of optimised Schwarz methodologies. Here, the information exchange between both subsystems is improved by a linear combination of the coupling conditions. To further speed up simulation time, the parallel-in-time method Parareal is analysed. The algorithm is investigated in the context of differential algebraic equations by studying its applicability to nonlinear higher index systems arising e.g. from circuit simulation. Finally, two approaches are proposed for the combination of Parareal and waveform relaxation. One of them is specifically designed for field-circuit coupled systems and yields a micro-macro-like Parareal algorithm. However, the idea behind it can be applied to other type of coupled systems. Numerical tests of field-circuit coupled systems are made to underline the results obtained from the mathematical theory as well as test the efficiency of the proposed algorithms
    corecore